Forklog 2022-02-18 09:59:21

Инженеры ускорили обучение нейросетей на CPU более чем в два раза

Израильский ИИ-стартап Deci объявил о достижении «прорывной производительности глубокого обучения» с использованием центральных процессоров (CPU).  The news is out! 🎉 We’re excited to announce that our family of image classification models called DeciNets reached a new level of industry-leading performance on large CPUs including Intel’s Cascade Lake. /1 pic.twitter.com/aCKGBDFpGo— Deci AI (@deci_ai) February 16, 2022 По словам представителей компании, модель классификации изображений DeciNets оптимизирована для использования на процессорах Intel Cascade Lake. Она использует запатентованную Deci технологию Automated Neural Architecture Construction (AutoNAC) и работает на CPU более чем в два раза быстрее и точнее, чем EfficientNets от Google на аналогичном оборудовании. Сравнение скорости обучения моделей на разном оборудовании. Данные: Deci. Соучредитель и генеральный директор Deci Йонатан Гейфман заявил, что их цель разрабатывать не только более точные модели, но и ресурсоэффективные. «AutoNAC создает лучшие на сегодняшний день модели компьютерного зрения, и теперь новый класс сетей DeciNet можно применять и эффективно запускать приложения ИИ на процессорах», — добавил он. В компании также сообщили, что уже почти год работают с Intel над оптимизацией глубокого обучения на процессорах корпорации. Несколько клиентов Deci уже внедрили его технологию AutoNAC в производственных отраслях, добавили они. Классификация изображений и распознавание объектов входят в число основных задач, для которых применяются алгоритмы глубокого обучения. По словам экспертов, сокращение разрыва производительности между GPU и CPU поможет не только удешевить разработку современных ИИ-алгоритмов, но и снизить нагрузку на рынок видеоускорителей. Напомним, в апреле 2021 года ученые из Университета Райса разработали новый механизм глубокого обучения, который тренирует нейронные сети на центральном процессоре в 4—15 раз быстрее, чем на GPU. В мае ученые с помощью ИИ ускорили моделирование Вселенной в 1000 раз. Подписывайтесь на новости ForkLog в Telegram: ForkLog AI — все новости из мира ИИ!

Прочтите Отказ от ответственности : Весь контент, представленный на нашем сайте, гиперссылки, связанные приложения, форумы, блоги, учетные записи социальных сетей и другие платформы («Сайт») предназначен только для вашей общей информации, приобретенной у сторонних источников. Мы не предоставляем никаких гарантий в отношении нашего контента, включая, но не ограничиваясь, точность и обновление. Никакая часть содержания, которое мы предоставляем, представляет собой финансовый совет, юридическую консультацию или любую другую форму совета, предназначенную для вашей конкретной опоры для любых целей. Любое использование или доверие к нашему контенту осуществляется исключительно на свой страх и риск. Вы должны провести собственное исследование, просмотреть, проанализировать и проверить наш контент, прежде чем полагаться на них. Торговля - очень рискованная деятельность, которая может привести к серьезным потерям, поэтому проконсультируйтесь с вашим финансовым консультантом, прежде чем принимать какие-либо решения. Никакое содержание на нашем Сайте не предназначено для запроса или предложения