Cryptos Platform logo Cryptos Platform logo
Forklog 2022-03-18 12:02:36

Google применила глубокое обучение для разработки ИИ-чипов

Компания Google и Калифорнийский университет в Беркли создали алгоритм глубокого обучения PRIME, помогающий разрабатывать быстрые и компактные процессоры для обработки задач искусственного интеллекта. Presenting PRIME, a data-driven approach for architecting hardware accelerators that trains a #DeepLearning model on existing accelerator data, improves runtime and chip area usage by 1.2 - 1.5X, and can generate accelerators for unseen applications → https://t.co/E0PcQMg3d4 pic.twitter.com/NdQWQgZ4AA— Google AI (@GoogleAI) March 17, 2022 Новый подход создает архитектуру ИИ-чипов на основе существующих чертежей и показателей производительности. Команда заявила, что сделанные по методу PRIME-конструкции чипы имеют задержку до 50% меньше, чем созданные с использованием классических подходов. Глубокое обучение также позволило сократить время для создания чертежей до 99%. Работа алгоритма PRIME. Данные: Google. Исследователи сравнили производительность чипов, созданных PRIME, с ускорителями EdgeTPU в девяти ИИ-приложениях, включая модели классификации изображений MobileNetV2 и MobileNetEdge. Они подчеркнули, что конструкции были оптимизированы для каждого приложения. Подход PRIME улучшил задержку в 2,7 раза и уменьшил площадь кристалла в 1,5 раза. Это позволит удешевить чипы и снизить энергопотребление, заявили ученые. Кроме этого, производительность чипов, созданных с помощью ИИ, оказалась выше во всех девяти приложениях, участвовавших в эксперименте. Всего три из них имели более высокую задержку в сравнении с конструкциями, созданных с помощью моделирования. Сравнение задержки при тестировании девяти приложений (меньше — лучше). Данные: Google. По словам исследователей, PRIME имеет многообещающие перспективы. Это включает в себя создание микросхем для приложений, требующих решения сложных задач оптимизации, а также использование чертежей низкопроизводительных микросхем в качестве обучающих данных. Напомним, в июне 2021 года в Google рассказали об использовании обучения с подкреплением для ускорения создания чипов с нескольких месяцев до шести часов. В октябре компания представила смартфоны Pixel 6 и Pixel 6 Pro c тензорным чипом для машинного обучения собственной разработки. В августе компания Samsung начала использовать искусственный интеллект для автоматизации процесса разработки компьютерных микросхем. Подписывайтесь на новости ForkLog в Telegram: ForkLog AI — все новости из мира ИИ!

Leggi la dichiarazione di non responsabilità : Tutti i contenuti forniti nel nostro sito Web, i siti con collegamento ipertestuale, le applicazioni associate, i forum, i blog, gli account dei social media e altre piattaforme ("Sito") sono solo per le vostre informazioni generali, procurati da fonti di terze parti. Non rilasciamo alcuna garanzia di alcun tipo in relazione al nostro contenuto, incluso ma non limitato a accuratezza e aggiornamento. Nessuna parte del contenuto che forniamo costituisce consulenza finanziaria, consulenza legale o qualsiasi altra forma di consulenza intesa per la vostra specifica dipendenza per qualsiasi scopo. Qualsiasi uso o affidamento sui nostri contenuti è esclusivamente a proprio rischio e discrezione. Devi condurre la tua ricerca, rivedere, analizzare e verificare i nostri contenuti prima di fare affidamento su di essi. Il trading è un'attività altamente rischiosa che può portare a perdite importanti, pertanto si prega di consultare il proprio consulente finanziario prima di prendere qualsiasi decisione. Nessun contenuto sul nostro sito è pensato per essere una sollecitazione o un'offerta